Practice Worksheet: Graphing Rational Functions Using Transformations

Graph the rational function including the asymptotes and a set of guide points from the slope.

$$1] y = \frac{1}{x-3}$$

a = ____

Use a to find the guide points:

(____, ___) and (____, ___)

Domain:

Range:

4]
$$y = \frac{-2}{x-2} - 1$$

V.A. at x = _____

a = ____

Use a to find the guide points:

(____, ____) and (____, ____)

Domain:

Range:

2]
$$y = \frac{-1}{x+3} + 5$$

a = ____

Use a to find the guide points:

(____, ____) and (____, ____)

Domain:

Range:

5]
$$y = \frac{3}{x} + 1$$

H.A. at $y = ____$

a = ____

Use a to find the guide points:

 $(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$ and $(\underline{\hspace{1cm}},\underline{\hspace{1cm}})$

Domain:

Range:

3]
$$y = \frac{2}{x+1} - 3$$

a = ____

Use a to find the guide points:

(____, ____) and (____, ____)

Domain:

Range:

6] $y = \frac{-2}{x+2} + 3$

H.A. at y = _____

a = ____

Use a to find the guide points:

(____, ___) and (____, ___)

Domain:

Range:

Write the equation of the rational function.

Describe each graph as compared to the parent graph $y = \frac{1}{x}$.

$$11] y = \frac{-2}{x-7} + 5$$

The graph of this ______ function has been translated _____ five units and translated _____ units to the _____. It has been _____ in the x-axis. The graph is _____ from left to right. The function has a domain of _____ and a range of ______.

12]
$$y = \frac{7}{x+2} - 4$$

The graph of this ______ function has been translated _____ four units and translated _____ units to the _____. It has been vertically stretched by a factor of _____. The graph is _____ from left to right. The function has a domain of _____ and a range of _____.

Write the equation that meets the given description. Show all work.

- 13] A rational function that has a domain of $x \neq -2$ and $y \neq 0$ and passes through $\left(-4, \frac{1}{2}\right)$.
- 14] A rational function that has a domain of $x \ne 1$ and $y \ne 4$ and passes through (-3,3).
- 15] A rational function that has a domain of $x \neq -4$ and $y \neq -9$ and passes through (-2, -8).